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Abstract—We present a framework that allows us to quantify
the impact of diversity on the performance of a heterogeneous
swarm of robots. We model the system of heterogeneous robots as
a community of species, where each species (robot type) is defined
by the traits (capabilities) that it owns. Specifically, we consider
the problem of distributing a large group of heterogeneous robots
among a set of tasks that require specialized capabilities in order
to be completed. In order to solve this distribution problem, we
develop centralized as well as decentralized methods to efficiently
control the heterogeneous swarm of robots. The methods are
based on a continuous model of the system at a macroscopic level.
We solve the system to obtain an optimal set of transition rates
for each species, so that the desired trait distribution is reached as
quickly as possible. Since the optimization relies on an analytical
derivation of the gradient, it is very efficient with respect to state-
of-the-art methods. Building on this result, we formulate a control
policy that performs the optimization in real-time to continuously
adapt the transition rates. Importantly, our framework includes
a diversity metric that enables an evaluation of the impact of
swarm heterogeneity on performance. The metric defines the
notion of minspecies, i.e., the minimum set of species that are
required to achieve a given goal. We show that two distinct goal
functions lead to two specializations of minspecies, which we
term as eigenspecies and coverspecies. Quantitative results show
the relation between diversity and performance.

Index Terms—Swarm robotics, stochastic systems, task alloca-
tion, heterogeneous multi-robot systems.

I. INTRODUCTION

Technological advances in embedded systems, such as com-

ponent miniaturization and improved efficiency of sensors and

actuators, are enabling the deployment of very large-scale

robot systems, i.e., robot swarms. However, as we aspire to

solve increasingly complex problems, it becomes ever more

difficult to embed all necessary capabilities into one single

robot type. Our premise is that one single type of robot cannot

cater to all aspects of the task at hand, because at the individual

level, it is governed by design rules that limit the scope of its

capabilities. For example, a larger robot may be able to carry

more powerful sensors, but may be less agile than its smaller

counterpart. Or, we could consider the limited payload of aerial

robots: if a given task requires rich sensory feedback, multiple

heterogeneous aerial robots can complement each other by

carrying distinct sensors. Instances of information gathering

lend themselves naturally to this problem formulation, with

applications to search, surveillance, environmental monitoring,

and situational awareness [7, 9, 26].
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As we allocate distinct capabilities among robot team mem-

bers, we imply a certain degree of specialization among indi-

viduals [1, 2, 11]. During this process, heterogeneity becomes

a design feature. The question is, then, how to best design

such systems so that the resulting performance is optimized.

However, since there has been very little work on quantitative

measures of diversity in multi-robot systems, we still lack the

analytical tools to understand the implications.

In this work, we contribute towards a general understanding

of heterogeneity by proposing a measure that quantifies the

diversity of a swarm of robots that is tasked to complete a goal.

Our hypothesis is that the diversity measure must be tied to the

underlying goal function for it to be meaningful. In particular,

we show how for two different goals, we need two different

diversity measures. Towards this end, we consider a concrete

application with the objective of distributing a swarm of het-

erogeneous robots as efficiently as possible among tasks that

require specialized competences. Our methodology enables the

formulation of control policies that take the heterogeneity of

the swarm into account explicitly, and that are capable of

adapting to changes online.

A. Example of the Redistribution Problem

Figure 1 shows a system comprising ten tasks that can

be serviced by means of four distinct traits. The initial

trait distribution is shown at t0, and subsequent desired trait

distributions are shown at t1, t2, and t3. Figure 2 shows how

the distribution of the traits evolves over time. This sequence

is an example of how a heterogeneous robot system can be

controlled to complete a global goal composed of several

subtasks that require a specific set of capabilities in specific

amounts. Also, the example shows how the solution to the

redistribution problem can incorporate temporal constraints or

precedence constraints: at an operator-level, we can define

arbitrary rules that govern transitions from one desired trait

distribution to another as a function of the system’s per-

formance. As an example application, we could consider a

spatially distributed information gathering scenario: if enough

data has been gathered at one site, we can reconfigure the

system of robots so that it distributes to sites that have not yet

been sufficiently accounted for. Which robots are deployed

to which sites will depend on their capabilities and how these

capabilities meet the needs that are anticipated at the sites. We

note that the communication infrastructure required for such an

approach is asymmetric: a centralized operator gathers abstract

state information about the robot swarm, and relays control

inputs back to the robots. This approach ensures algorithmic

invariance as we scale the system [16].
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Fig. 1. Four configurations of a system with 10 tasks (nodes) and 4 traits. The trait abundance per task is represented by a bar plot. The edges of this strongly
connected graph represent the possibility of switching between a pair of tasks. The system’s initial distribution is shown at t0, with subsequent desired target
distributions at t[1,2,3] .

B. Background

Given a set of tasks, and knowledge about the task require-

ments, our problem considers which robots should be allocated

to which tasks. This problem is an instance of the MT-MR-

TA: Multi-Task Robots, Multi-Robot Tasks problem [8], and

can be reformulated as a set-covering problem that stems

from combinatorial optimization. This problem is strongly

NP-hard [13]. A greedy algorithm to solve this problem was

proposed in [4], and later adapted for use in distributed multi-

agent systems [24]. In the latter approach, the robots must

compute all possible “coalitions” (groupings to solve a specific

task), and agree on the best ones. Hence, this algorithm is

best applied when the space of possible coalitions is naturally

limited. Market-based approaches have also been considered to

solve task allocation problems [6]. However, such approaches

rely on bidding mechanisms that make extensive use of com-

munication, and hence, scale poorly as the number of robots

and tasks increases (not to mention that they do not address the

problem of controller synthesis). In particular, for systems that

are required to adapt to changing task requirements online, we

need to consider algorithms that are efficient and that run on

low-cost, resource-constrained mobile platforms in real time.

Hence, we consider a strategy that is scalable in the number

of robots and their capabilities, and is robust to changes in

the robot population [3, 10]. An important property of this

strategy is its inherently decentralized architecture, with robots

switching between tasks (behaviors) stochastically. The key

difference between our work and previous work is that we

formulate our desired state as a distribution of traits among

tasks, instead of specifying the desired state as a direct mea-

sure of the robot distribution. In other words, our framework

allows a user to specify how much of a given capability is

needed for a given task, irrespective of which robot type

satisfies that need. As a consequence, we do not employ

optimization methods that utilize final robot distributions in

their formulations (which is the case in previous works [3]

and [15]). Instead, we explicitly optimize the distribution

of traits, and implicitly solve the combinatorial problem of

distributing the right number of robots of a given type to the

right tasks.
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Fig. 2. Evolution over time of the trait distribution as specified by the
distributions shown in Fig. 1. Each subplot represents one trait, indicating
the distribution of that trait over the set of tasks (for each subplot, task 1 is
shown at the bottom and task 5 at the top). The system’s initial distribution is
shown at t0, with subsequent desired target distributions reached at t[1,2,3] .

C. Contributions

In [23], we first presented a method that distributes a swarm

of heterogeneous robots among a set of tasks that require

specialized capabilities in order to be completed. Since our

method is based on the derivation of an analytical gradient,

it is very efficient with respect to state-of-the-art methods.

The work in [21] builds on this result, proposing a real-

time optimization method that enables an online adaptation

of transition rates. Finally, in [22], we first propose a diversity

metric, and show how the performance of the system relates

to this measure. Apart from consolidating these previous

publications, and assembling all major contributions into one

coherent article, the present article provides the following



contributions:

• In our previous work, we considered a single goal, which

required an exact match of the final trait distribution to

the desired trait distribution. Here, we also consider the

formulation of a goal that allows for a minimum match

(and does not penalize superfluous traits). By considering

this additional goal function and extending the scope

of our work, this paper presents a unified framework

that allows us to simultaneously solve the allocation

problem as well as the controller synthesis problem for

heterogeneous swarms.

• We generalize the definition of our diversity metric to

include multiple possible underlying goal functions. We

show that our previous definition of eigenspecies is a sub-

class of the general class of minspecies. Furthermore, we

show that our second goal function leads to an additional

subclass of minspecies, and we refer to this new subclass

as the coverspecies. We analyze the performance of our

system as a function of dedicated diversity measures, one

that is based on eigenspecies, and the other that is based

on coverspecies.

• We provide a decentralized implementation of our online

performance optimization algorithm for robot swarms

that compute the controls locally. Simulation results

show that our algorithm exhibits a graceful performance

degradation in the case of increasing communication

constraints.

• We reformulate our optimization problem as a con-

strained optimization problem that guarantees a minimum

acceptable level of performance.

• We provide updated and new experimental results that

support all novel contributions.

II. PROBLEM FORMULATION

Heterogeneity and diversity are core concepts of this work.

To develop our formalism, we borrow terminology from

biodiversity literature [19]. We define our robot system as a

community of robots. Each robot belongs to a species, defining

the unique set of traits that encodes the robots’ capabilities.

In this work, we will consider binary instantiations of traits

(corresponding to the presence or absence of a given trait in a

species). Concretely, traits are a concatenation of one-hot en-

codings of different bucketized robot characteristics - such as

geometric constraints (e.g., form factor), dynamics/kinematics

(e.g., maximum speed), sensors (e.g., camera or laser range

finder), computing power (e.g., storage capacity), or commu-

nication (e.g., typical range). In this work, we assume that the

tasks have been encoded through such binary characteristics

that represent the skill sets critical to task completion.

A. Notation

We consider a community of S robot species, with a total

number of robots N , and N (s) robots per species such that∑S

s=1 N
(s) = N . The community is defined by a set of U

traits, and each robot species owns a subset of these traits. A

species is defined by a binary vector q(s) = [q
(s)
1 , q

(s)
2 , ..., q

(s)
U ].

We can then define a S × U matrix Q, with rows q(s):

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M tasks via

a directed graph, G = (E ,V) where the set of vertices, V ,

represents tasks {1, . . . ,M} and the set of edges, E , represents

the ordered pairs (i, j), such that (i, j) ∈ V × V , and i and j

are adjacent. Edges denote the possibility to switch between

two adjacent tasks. We assume the graph G is a strongly

connected graph, i.e., a path exists between any pair of vertices

(in contrast to a fully connected graph, where an edge exists

between any pair of vertices), and we assume the robots have

knowledge of this graph. We assign every edge in E a transition

rate, k
(s)
ij > 0, where k

(s)
ij defines the transition probability per

unit time for one robot of species s at site i to switch to site j.

Here k
(s)
ij is a stochastic transition rule. We impose a limitation

on the maximum rate of each edge with k
(s)
ij < k

(s)
ij,max. These

values can be determined by applying system identification

methods on the actual system. For example, in a system where

nodes represent physically distributed sites, the transition rate

represents the rate with which a specific path is chosen. This

value can depend on observed factors, such as typical road

congestion or the condition of the terrain. The distribution of

the robots belonging to a species s at time t is described by

a vector x(s)(t) = [x
(s)
1 (t), ..., x

(s)
M (t)]⊤, and is summarized

in a M × S matrix X(t), which we refer to as abstract state

information. Then, if q(s) are the rows of Q, we have the

M × U matrix Y that describes the distribution of traits on

sites. For time t this relationship is given by

Y(t) = X(t) ·Q (1)

B. System

The initial state of the system is described by X(0), and

hence, the initial distribution of traits at the sites is described

by Y(0). The time evolution of the number of robots of species

s at site i is given by a linear control law

dxi

dt
=

∑

∀j|(i,j)∈E

kjixi(t)−
∑

∀j|(i,j)∈E

kijxi(t), (2)

which exhibits an explicit feedback structure. Then, for all

species s, our base model is given by

dx(s)

dt
= K

(s)
x
(s) ∀s ∈ 1, . . . , S (3)

where K(s) ∈ R
M×M is a rate matrix with the properties

K
(s)⊤

1 = 0 (4)

K
(s)
ij ≥ 0 ∀(i, j) ∈ E (5)

These two properties result in the following definition:

K
(s)
ij =











k
(s)
ji , if i 6= j, (i, j) ∈ E

0, if i 6= j, (i, j) /∈ E

−
∑M

i=1,(j,i)∈E k
(s)
ij , if i = j



Since the total number of robots and the number of robots

per species is conserved, the system in Eq. 3 is subject to the

constraints

X
⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

with X � 0, (7)

where � is an element-wise greater-than-or-equal-to operator.

C. Problem Statement

Our aim is to redeploy the robots of each species, distributed

according to X(0) initially, so that a desired trait distribution

Y⋆ is reached. As described in the introduction, we will

consider two goals. A goal consists of a set of admissible trait

distributions, and is described by a function G : N+ M×U →
Ω, where Ω is the set of sets of matrices of size M ×U . The

goal function G takes as input a target trait distribution Y⋆

and returns a set of admissible trait distributions G(Y⋆).

We study the following two goal functions in detail.

• G1(Y
⋆) = {Y | Y⋆ = Y}: This goal is achieved by

a trait distribution that is exactly equal to the target trait

distribution. Thus, the robots must organize themselves

among tasks such that the exact number of traits is met

for each task.

• G2(Y
⋆) = {Y | Y⋆ � Y}: This goal is achieved by

trait distributions that are equal or greater than the target

trait distribution. Thus, robots can organize themselves

such that there is an excess of traits for any task.

Finally, the problem consists of finding an optimal rate matrix

K(s)⋆ for each species s so that the goal is reached as fast as

possible:

K(s)⋆, τ⋆ = argmin
K(s),τ

τ (8)

such that X(τ⋆) ·Q ∈ G(Y⋆) (9)

The solution leads to a robot configuration X(τ⋆) that satisfies

Eq. 9, subject to Eq. 6 and Eq. 7. In other words, by computing

optimal rates, we are centrally synthesizing the feedback

policy based on the abstract state information X(0). We will

initially assume that this information can be gathered centrally,

and that the control input K(s)⋆ can be broadcast to the

swarm. Later, in Section V, we see how to infer the abstract

state information using local estimators, enabling the robots

to synthesize the feedback policy in a decentralized manner.

III. DIVERSITY METRIC

Since the desired state of our system is solely de-

scribed through Y⋆, the corresponding final robot distribution

X(τ⋆) = X⋆ that achieves the goal G(Y⋆) is not known

a priori. In particular, there may be several X⋆ that satisfy

Eq. 9 – this is true for both goals G1 and G2. Hence, we

pose the question: Can we infer properties of the species-

trait matrix Q that quantify how easy it is to find a solution

X⋆ that reaches G(Y⋆)? In the following, we show how Q

embodies the diversity of the robot community, and how we

can quantitatively evaluate the diversity to make conclusions

about the system’s performance.

A. Definitions

Given an unlimited number of robots per species, it may be

possible to reach any given goal G(Y⋆) with a subset of the

original robot species (independent of the target trait distribu-

tion Y⋆). We call the species belonging to an inclusion-wise

minimal subset the minspecies, and we refer to the size of

this subset as the minspecies cardinality of the system. More

formally, we introduce the following terminology:

Definition 1 (Minspecies): In a robot community described

by a species-trait matrix Q, a minspecies set is a subset of

rows of Q with minimal cardinality, such that the system can

still reach the goal G(Y⋆). We represent minspecies by a

matrix Q̂ containing a subset of the original rows of Q such

that for any Y⋆ there exists at least one robot distribution X̂

for which X̂Q̂ ∈ G(Y⋆).

Definition 2 (Minspecies cardinality): The minspecies car-

dinality of a robot community is given by the cardinality of

the minspecies set. It is a function DG : {0, 1}S×U → N
+

that takes a species-trait matrix Q as input, and returns the

minimum number of rows of Q that are needed to reach

G(Y⋆) for any Y⋆.

B. Implementation

In this section, we develop the minspecies cardinality of

our two goals G1 and G2. In particular, we demonstrate that

for both goals, the minspecies cardinality is a meaningful

quantitative measure of the constraint in Eq. 9.

Proposition 1: The minspecies cardinality with respect to

goal G1 is

DG1(Q) = rank(Q) (10)

This implementation of the minspecies cardinality is directly

related to the concept of algebraic independence, and hence,

we use the specialized term eigenspecies (as previously intro-

duced in [22]).

Proof: The admissible trait distribution set contains a sin-

gle target trait distribution, Y⋆, and thus, Eq. 9 is equivalent

to Y⋆ = X⋆Q. The matrix Q⊤ can be rank-factorized into

the product of two matrices A and Q̂ such that Q⊤ = Q̂⊤A⊤

with Q̂ containing a subset of the rows of Q [25]. Since

Y⋆ = X⋆Q = X⋆AQ̂, there exists a robot distribution

X̂ = X⋆A for which X̂Q̂ = Y⋆. Hence, as Q̂ has minimal

size (due to the rank-factorization), Q̂ is a minspecies matrix.

Indeed, the rank of Q quantifies the number of non-collinear

species in Q that span the solution space of the equation

X⋆Q = Y⋆ (with X⋆ unknown):

• If rank(Q) < S, the system is underdetermined, and

an infinite number of solutions X⋆ will satisfy Eq. 9.

In other words, at least one species in the system can

be replaced by a combination of the other species. As

the rank decreases, the redundancy of the community

increases.

• If rank(Q) = S, there is only one solution X⋆ that

satisfies Eq. 9. In other words, no species in the system
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Fig. 3. This basic example illustrates how a goal is achieved by two species,
q(1) and q(2). Species q(1) only owns trait u1, and species q(2) owns both
traits u1 and u2. The left panel shows how the two species span the trait space.
Goal G1 can only be reached by a combination of both species, whereas goal
G2 can be reached by species q(2) alone. The same insight can be made by
observing the right panel, which shows the goals in species space. We remind
the reader that the species-trait matrix Q is used to map robot species into
trait space.

can be replaced by a combination of the other species,

and all species are fully complementary.

As an example, consider matrix

Q =





1 0 0
0 1 1
1 1 1



 = A · Q̂ =





1 0
0 1
1 1



 ·

[

1 0 0
0 1 1

]

.

The rank of Q is 2, hence, DG1(Q) = 2, which is the number

of species in Q̂.

Proposition 2: The minspecies cardinality with respect to

goal G2 is

DG2(Q) = min

S∑

s=1

a(s) (11)

such that

S∑

s=1

a(s)q(s) ≻ 0 and a(s) ∈ {0, 1}

This implementation of the minspecies cardinality is directly

related to the concept of cover sets, and hence, we use the

specialized term coverspecies.

Proof: The admissible trait distribution set for G2 contains

all trait distributions that contain at least the specified amount

of traits per task. Eq. 9 under goal G2 becomes Y⋆ � X⋆Q.

The matrix Q can be factorized into a product of two matrices

A and Q̂ such that Q � AQ̂. Since Y⋆ � X⋆Q � X⋆AQ̂

(since X⋆ � 0), there exists a distribution X̂ = X⋆A for

which the goal is reached. If Q̂ has the minimum number of

rows possible, Q̂ is a minspecies matrix, and thus, finding Q̂

amounts to finding the minimum cover-set required to cover

all traits with selected species of Q.

We consider the same example as above:

Q =





1 0 0
0 1 1
1 1 1



 � A · Q̂ =





1
1
1



 ·
[

1 1 1
]

The minimum cover-set has size 1, hence, DG2(Q) = 1, which

is the number of species in Q̂.

Figure 3 illustrates a basic example of how goals G1 and

G2 are achieved by two species, defined as q(1) = [1, 0] and

q(2) = [1, 1]. The left panel shows how the goals occupy

the trait space, and the right panel shows how they occupy

the species space. In particular, the panels illustrate how G2
can be reached by species q(2) alone (see the dashed arrow).

Species q(1) and q(2) both belong to the eigenspecies of G1,

while q(2) is the only coverspecies of G2.

IV. METHODOLOGY

In this section, we describe our methodology for obtaining

an optimal transition matrix K(s)⋆ for each species so that

the desired trait distribution is reached as fast as possible.

Two general approaches have been considered so far [3]:

convex optimization and stochastic optimization. The convex

optimization approach requires knowledge of the desired final

robot distribution. However, our problem formulation specifies

a desired trait distribution Y⋆ without explicit definition

of the final robot distribution X⋆. Fully stochastic schemes

such as Metropolis optimization have been shown to produce

similar results, but they are not computationally efficient,

and are ill-suited to real-time applications. In the following,

we present a differentiable constrained optimization problem

that can be efficiently solved through gradient descent tech-

niques. Our method explicitly minimizes the convergence time

of K(s), unlike the convex optimization methods presented

in [3], which approximate K(s) with a symmetric equivalent

(forcing bidirectionally equal transition rates between sites).

Additionally, it is able to find optimal transition rates with

only knowledge of Y⋆ and X(0) (i.e., without knowledge of

X⋆).

A. Optimization Problem

We combine the solution of the linear ordinary differential

equation, Eq. 3, with Eq. 1 to obtain the solution:

Y(K(1...S), t;X0) =

S
∑

s=1

eK
(s)t

x
(s)
0 · q(s)

(12)

To find the optimal transition rates K(s)⋆ for G1 (details for

G2 are in the appendix), we consider the trait distribution error

E1(K
(1...S), τ ;X0) =

∥

∥

∥
Y

⋆ −Y(K(1...S), τ ;X0)
∥

∥

∥

2

F
(13)

where τ is the time at which the desired state is reached.

The notation x
(s)
0 is shorthand for x(s)(0). The operator ‖ ·‖F

denotes the Frobenius norm of a matrix. An objective function

based on E1 alone will return transition rates that may lead to

the desired trait distribution quickly, but there is no guarantee

that this state is also is a steady-state. Additionally, if we

compute the transition rates at the outset of the experiment

(without refining them online), we may wish to ensure that

the state reached at the optimal time τ⋆ remains near-constant.

Hence, we also consider the difference in robot distribution

E2(K
(1...S), τ ;X0) =

S
∑

s=1

∥

∥

∥
eK

(s)τ
x
(s)
0 − eK

(s)(τ+ν)
x
(s)
0

∥

∥

∥

2

2

at time τ (when the desired trait distribution should be

reached) and time τ + ν. Enforcing a small value for E2



allows us to guarantee that the robot distribution remains near-

constant for arbitrarily long time intervals ν. This is possible

because our model in Eq. 3 is stable [10], and the difference

between the current robot distribution and the one at steady-

state can only decrease monotonically over time. In other

words, the trait distribution corresponding to the steady-state

of K(s)⋆ gets arbitrarily close to the distribution reached

at τ as ν increases. We can now formulate our constrained

optimization problem as:

minimize τ (14)

such that E1(K
(1...S), τ ;X0) ≤ ǫ1

E2(K
(1...S), τ ;X0) ≤ ǫ2

k
(s)
ij ≤ k

(s)
ij,max

τ > 0,

which states that an optimal time τ⋆ is found when the final

trait distribution error is smaller than the admissible squared

trait error ǫ1, and when the difference in robot distributions at

times τ⋆ and τ⋆ + ν is smaller than the admissible squared

deviation ǫ2, subject to maximum transition rates k
(s)
ij,max. The

smaller we choose ǫ1, the closer the trait distribution at time

τ⋆ will be to the desired trait distribution. The smaller we

choose ǫ2, the closer the robot distribution at time τ⋆ is to

the steady-state distribution of K(s)⋆ (and the closer the trait

distribution is to the steady-state trait distribution). While the

first constraint will decrease τ⋆, the second constraint will

tend to increase it.

B. Analytical Gradients

There is no closed-form solution to the optimization prob-

lem in Eq. 14, hence we resort to numerical techniques. Nev-

ertheless, we can maximize the efficiency of our computations

by finding the closed-form expression of the gradient, for

each of our constraints. In the following, for better readabil-

ity, we will omit the explicit notation of the parameters of

E1(K
(1...S), τ ;X0) and E2(K

(1...S), τ ;X0), and write E1

and E2, respectively. Let us first consider the derivative of

E1. By applying the chain rule, the derivative with respect to

the transition matrix K(s) is

∂E1

∂K(s)
=

∂E1

∂eK(s)τ
·
∂eK

(s)τ

∂K(s)τ
·
∂K(s)τ

∂K(s)
(15)

We first compute the derivative of the cost with respect to the

expression eK
(s)τ

∂E1

∂eK(s)τ
= −2

[

Y
⋆ −Y(K(s), τ ;X0)

]

·
[

x
(s)
0 · q(s)

]⊤

(16)

The derivation of the 2nd element of Eq. 15 requires the

derivative of the matrix exponential. Computing the derivative

of the matrix exponential is not trivial. We adapt the closed-

form solution given in [12] to our problem, and write the

gradient of our constraint as

∂E1

∂K(s)
= V

−1⊤
[

V
⊤ ∂E1

∂eK(s)τ
V

−1⊤
⊙W(τ )

]

V
⊤τ (17)

where ⊙ is the Hadamard product, K(s) = VDV−1 is the

eigendecomposition of K(s). V is the M ×M matrix whose

jth column is a right eigenvector corresponding to eigenvalue

di, and D = diag(d1, . . . , dM ). The matrix W(t) is composed

as follows 1

W(t) =

{

(edit − edjt)/(dit− djt) i 6= j
edit i = j

We also need the derivative with respect to parameter τ .

This derivative is computed analogously to the derivative with

respect to K(s) (confer Eq. 17). We have

∂E1

∂τ
=

S
∑

s=1

1
⊤
V

−1⊤
A1V

⊤
K

(s)
1 (18)

and

A1 = V
⊤ ∂E1

∂eK(s)τ
V

−1⊤
⊙W(τ ) (19)

Now let us consider the derivative of the second constraint in

Eq. 14. Again, we apply the chain rule to obtain

∂E2

∂K(s)
=

∂E2

∂eK(s)τ

∂eK
(s)τ

∂K(s)τ

∂K(s)τ

∂K(s)
(20)

−
∂E2

∂eK(s)(τ+ν)

∂eK
(s)(τ+ν)

∂K(s)(τ + ν)

∂K(s)(τ + ν)

∂K(s)

The outer derivative is

∂E2

∂eK(s)τ
=

∂E2

∂eK(s)(τ+ν)
(21)

= 2
[

eK
(s)τ

x
(s)
0 − eK

(s)(τ+ν)
x
(s)
0

]

· x
(s)
0

⊤

We apply the same development as in Eq. 17 to obtain the

equation

∂E2

∂K(s)
= V

−1⊤
[A2τ −A3(τ + ν)]V⊤

(22)

with

A2 = V
⊤ ·

∂E2

∂eK(s)τ
·V−1⊤

⊙W(τ ) (23)

and

A3 = V
⊤ ·

∂E2

∂eK
(s)(τ+ν)

·V−1⊤
⊙W(τ + ν) (24)

The derivative with respect to time τ is analogous:

∂E2

∂τ
=

S
∑

s=1

1
⊤
V

−1⊤
[A2 −A3]V

⊤
K

(s)
1 (25)

For all the above, the derivative with respect to the off-diagonal

elements ij of the matrix K(s), with (i, j) ∈ E , is

∂Ez

∂k
(s)
ij

=

{

∂Ez

∂K(s)

}

ij

−

{

∂Ez

∂K(s)

}

jj

(26)

where {·}ij denotes the element on row i and column j.

1Here, we assume that that K(s) has M distinct eigenvalues. If this is
not the case, an analogous decomposition of K(s) to Jordan canonical form
is possible, as elaborated in [12]. We note that for most models of interest,
however, this is rarely the case.



C. Computational Complexity

The overall computational complexity of computing the

gradients of both constraints of our optimization problem is

O(S · M3 + S · M2 · U). The first part of this complexity

is dictated by the eigenvalue decomposition, which is known

to be O(M3) for non-sparse matrices [5]2. We compute this

decomposition only once per optimization (see Eq. 17, where

K(s) = VDV−1), for each optimization of K(s). The second

part is dictated by the multiplication of the matrices in Eq. 17,

for which the cost is O(M2 · U). Globally speaking, the

computation grows linearly with the number of species and

traits, and it grows slightly slower than the cube of the number

of tasks. When studying heterogenous system, it is indeed a

valuable result that the gradient scales at most linearly with

the number of traits and species in order to allow for the

exploration of a wider range of robot capabilities. Overall,

the average time to compute the gradient for a system with

M = 8, U = 4, and S = 4 is around 1.35 ms with ν = 0,

and 2.2 ms with ν > 0 (the number of parameters to optimize

can be as large as 225 in this case, depending on the graph’s

adjacency matrix). The code was implemented in Python using

the NumPy and SciPy libraries, and tested on a 2 GHz Intel

Core i7 using a single CPU.

D. Online Optimization of K(s)

Thanks to the analytical gradients developed above, our

optimization problem can be solved efficiently. Building on

this result, we implement a continuous, online optimization

strategy that allows us to refine the optimal K(s)⋆ as a

function of the current state of the robot system, in real-time.

In noisy systems, where the trajectories of individual agents

exhibit deviations from predicted macroscopic trajectories, this

strategy inevitably leads to an improvement of the convergence

time. Furthermore, as seen in our example in Figures 1

and 2, we may wish to program a sequence of desired trait

distributions, with autonomous transition rate updates. The key

idea is that by taking the actual robot distribution into account,

an online method can recompute updated optimal transition

rates. Practically, we initially compute K(s)⋆ at time t = 0 to

control the system over a finite period δ from t = 0 to t = δ.

After that period (at time t = δ), we optimize a new value

of K(s)⋆ that controls the system for the next period, as a

function of the actual robot distribution that was encountered

at time t = δ. This process can be repeated indefinitely. The

value δ is called the sampling time. Our online control policy

computes the optimal transition rates, and is rewritten as a

function of the robot distribution:

2In the special case where all eigenvalues are distinct, the eigenvalue
decomposition can be reduced to O(M2.376 log(M)) [18].

K
(s)⋆(t), τ⋆(t) = argmin

K(s),τ

τ (27)

such that E1(K
(1...S), τ ;X(tp)) ≤ ǫ1

E2(K
(1...S), τ ;X(tp)) ≤ ǫ2

k
(s)
ij ≤ k

(s)
ij,max

τ > 0,

with tp ≤ t < tp + δ

tp ∈ kδ, k ∈ N,

where tp is the time at which optimizations happen. For cases

where the optimization time becomes large (implying that δ

also becomes large), we need to use a strategy that accounts

for computation delay, such as those presented in [17]. Also,

we note that we can accelerate the computations by setting the

initial values of the present sampling window with optimized

values of the preceding sampling window (i.e., warm start).

V. ROBOT CONTROLLER

The previous sections describe the methods with which

we obtain optimal transition rates K(s)⋆. If we assume an

architecture such as described in [16], then the optimization

is run off-board, centrally, with knowledge of abstract state

information X(t) (i.e, the current distribution of the robot

swarm among tasks). In return, the robots only need to receive

information on the optimal transition rates for their species,

k
(s)
ij . We note that this information is represented by a small

number of values (at most M2 values per species, or a

much smaller number if the graph is sparse), and needs to

be transmitted to the robots only at the start of each new

redistribution.

Conversely, if the robots run the optimization algorithm on-

board, they need to estimate the abstract state information X(t)
locally. This knowledge can be obtained through communica-

tion with neighboring robots (which broadcast their current

task allocation). Due to communication constraints, obtaining

an accurate representation of X(t) is often not possible. Hence,

our methods must perform acceptably well, even when these

values are approximate [14]. In the present work, we use a

method that assumes a uniform distribution of all robots for

which we do not know the current task allocation.

The agent-level control is based on the transition rates k
(s)
ij

encoded by the transition matrix K(s): A robot of species s

at task i transitions to task j according to probability p
(s)
ij

that is an element of the matrix P(s) = eK
(s)∆T , where

∆T is the duration of one time-step. Hence, in order to

determine which task the robot must transition to next, it

samples a new task with a probability according to P(s).

This is equivalent to sampling from the discrete probability

distribution P(p
(s)
i1 , . . . , p

(s)
iM ), where i represents the current

task. This procedure is shown in Algorithm 1. We note that as

the robot is transitioning to a new task, it continues the control

loop (i.e., sampling new tasks). Although we do not explicitly

model transitioning time, the resulting behavior is very close



to what is predicted by the macroscopic model in Eq. 3, as is

shown later in Section VI.

Algorithm 1 Controller(s,M,N (1),...,(S),Q,Y⋆, δ,∆T )

1: i← GetInitialTask()
2: t← 0
3: while 1 do

4: BroadcastAllocation(< s, i >)
5: if modulo(t, δ) = 0 then

6: A← GetAllocations()
7: Xlocal ← EstimateRobotDistr(A,N (1),...,(S),M)
8: K(s)⋆ ← Optimize(Xlocal,Q,Y⋆)

9: P(s) = eK
(s)⋆∆T

10: end if

11: t← t+∆T

12: m ∼ P(p
(s)
i1 , . . . , p

(s)
iM )

13: if m 6= i then

14: Switch to task m

15: i← m

16: end if

17: Wait ∆T

18: end while

VI. RESULTS

In the following, we present results that show that (i) our

method successfully achieves the deployment of a heteroge-

neous system of robots so that a desired trait distribution

is reached, (ii) that our method extends itself naturally to

decentralized architectures with communications constraints,

and that (iii) we are able to relate the performance to the

diversity of the system. We evaluate these claims over multiple

levels of abstraction.

A. Performance Metric

The degree of convergence to Y⋆ is expressed by the

fraction of misplaced traits. For our two goals, we formulate

this as:

µG1(Y) =
‖Y⋆ −Y‖1
2‖Y⋆‖1

, µG2(Y) =
‖max(Y⋆ −Y, 0)‖1

‖Y⋆‖1
(28)

Previous work has shown the benefit of validating methods

over multiple levels of abstraction (sub-microscopic, micro-

scopic, and macroscopic) [20]. In this section, we propose an

evaluation of our methods on two levels: macroscopic, and

microscopic. Indeed, the most efficient way of simulating a

large-scale system of robots is by considering a continuous

macroscopic model, derived directly from the ordinary dif-

ferential equation, Eq. 3. In order to validate our methods

at a lower level of abstraction, we also implement a discrete

microscopic model that emulates the behavior of individual

robot controllers. The agent-level control is based on Al-

gorithm 1. Running multiple iterations of the microscopic

model enables us to capture the stochasticity resulting from

our control system. In the remainder of this paper, we use

∆T = 0.04 s, unless stated otherwise.

x [m]

y
[m

]

Fig. 4. Trail for 3 robots, one of each species, for the first 700 seconds
(segment t0 to t1) in Fig. 1. The robots start at sites 1, 2, and 3, respectively,
and end at site 4. The earlier the trail, the more transparent the color.

B. Example

To illustrate our method in more detail, let us consider the

example portrayed earlier, in Fig. 1. The graph is generated

randomly according to the Watts-Strogatz model [27] (with a

neighboring node degree of K = 3, and a rewiring probability

of γ = 0.6; the graph is guaranteed to be connected). The robot

community consists of 3 species and 4 traits, and is defined

as follows:

Q =





1 0 1 0
1 0 0 1
0 1 0 1



 with X
⊤ · 1 = [150, 50, 300]⊤

In this example, N = 500 robots transition among M = 10
tasks. We sample a random initial robot distribution X(t0)
with a majority of traits in use at tasks 1, 2, and 3. We

specify a randomly generated desired trait distribution, which

is visualized in Fig. 1 at t1. The final robot distribution

X(t1) then serves as the initial distribution for a subsequent

reconfiguration targeting the trait distribution visualized at t2.

As this process is repeated, it demonstrates how our method

can be used to redistribute a swarm of robots through time so

that changing trait requirements are met.

To illustrate the performance of our method, we implement

a kinematic point-simulator, emulating a swarm of robots at

a microscopic level. The robots move on a two-dimensional

plane, which is 3 m in size, where the tasks are represented

by spatially anchored sites that have a radius of 0.05 m, and

are placed along a circle of radius 1.75 m. The paths between

the sites are defined according to the adjacency matrix of the

graph shown in Fig. 1. The robots travel with an average speed

of 0.06 m
s , as they transition from site to site, with a maximum

transition rate k
(s)
ij,max = 0.02 s−1. Fig. 4 shows the trail laid by

three robots during the period t0 to t1, as they travel from their

initial sites to the final site. We note that the motion control

used for the robots in this simulator is identical to the one

used to control physical robots in a previous experiment [22].

In order to quantify the performance of our system, we

perform 10 runs of our simulator, and evaluate the ratio

of misplaced traits as a function of time. We also evalu-

ate the performance of the system at a macroscopic level.

The results are shown in Fig. 5. We observe that the trait

error decreases exponentially. Initially, the microscopic and



t0 = 0 t1 = 700 t2 = 1400 t3 = 2100

Macroscopic

Microscopic

Time [s]
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Fig. 5. Ratio of misplaced traits for the redistribution problem shown in
Fig. 1. The plot shows the macroscopic model as well as the average over
10 iterations of the microscopic model. The shaded area shows the standard
deviation.

macroscopic models show good agreement, but as the system

approaches steady-state, the stochasticity of the microscopic

point-simulator forces the error ratio (which counts absolute

differences) to be larger than 0. Note that systems with slower

dynamics and more robots have a lower noise intensity, and

achieve lower average errors at steady-state. This experiment

shows that our framework is able to cope with spatiality

and temporal delays, even though these phenomena are not

modeled explicitly in our optimization problem. Throughout

the rest of this section, we will focus on the core properties of

our method, and hence, we simplify our implementation of the

microscopic model by considering instantaneous transitions

from one task to the next, within non-spatial configurations.

C. Online Optimization

We evaluate the performance of our online optimization

algorithm described in Section IV-D, for both goal functions

G1 and G2, and compare it to the macroscopic model. Fig. 6

shows the ratio of misplaced traits µ(Y) over time for a graph

with M = 8 nodes, for S = 4 and U = 5, and a total

number of robots N = 1000. The initial distribution consists

of traits randomly allocated to one half of the tasks, and

the desired distribution consists of traits randomly allocated

to the remaining half of tasks. Fig. 6(a) considers goal G1
(matching the desired trait distribution exactly), and Fig. 6(b)

considers goal G2 (matching a minimum desired amount of

traits per task). For both plots, we run 50 iterations of the

discrete microscopic model, with and without online opti-

mization. The online optimization method was implemented

with δ = 20 · ∆T . We observe that the trait error decreases

exponentially. Since the online optimization method takes the

current robot configuration into account, it produces transition

rates that lead to lower errors. Finally, we observe that goal

G2 converges faster than G1, due to the additional degrees of

freedom in the system (i.e., traits that can be allocated to any

task in the system, as soon as the minimum amount is reached).

As previously observed in Fig. 5, we see that here as well, the

stochasticity of the microscopic models prevents the error from

µ
G
1
(Y

)

Time [s]

Microscopic
Online Micro.
Macroscopic

(a)

µ
G
2
(Y

)

Time [s]

Microscopic
Online Micro.
Macroscopic

(b)

Fig. 6. Ratio of misplaced traits over time, in log-scale, for a graph with M =
8 nodes. The plot shows the macroscopic model as well as the average over
50 iterations of the microscopic model, with and without online optimization.
The error bars show the standard deviation. (a) Goal function G1, (b) Goal
function G2.
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,t
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Berman et al.
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(a)

Ours
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Fig. 7. The plot shows the median convergence time evaluated on the
microscopic model, with tµthresh for µthresh = 2.5%, as a function of
the minspecies cardinality, for 60 random graphs per cardinality value. The
system has M = 10 tasks and S = 6 species. The shaded area shows the
25th and 75th percentiles. (a) Goal function G1, (b) Goal function G2.

continuing to decrease exponentially as the system approaches

steady-state.

D. Impact of Diversity

Our aim is to observe the impact of diversity on system

performance. We accomplish this by evaluating the time of

convergence to the desired trait distribution as a function of

our proposed diversity measure, the minspecies cardinality. We

consider a system of M = 10 tasks and S = 6 species, and

generate random species-trait matrices Q (for both G1 and

G2) with minspecies cardinality values ranging from 1 to 6.

The system is evaluated on 60 graphs, for each minspecies

cardinality value, with a random initial robot distribution and

a random desired trait distribution per graph. We measure

the time tµ,thresh at which the system converges to a value

µthresh = 2.5% of misplaced traits, and say that one system

converges faster than another if it takes less time for µ(Y)
to decrease to µthresh. Similar performance metrics have been

proposed in [3, 10].

Fig. 7 shows the results for the goal G1. Our optimization

method is shown in green. We see that as the minspecies

cardinality of the system increases, the time to convergence

also increases. Indeed, the size of the solution space of Eq. 9



decreases as the minspecies cardinality increases. In other

words, the more the species are complementary, the harder

the system is to optimize. Also, we compare our method

to a benchmark convex optimization approach that stems

from [3], denoted in the latter work as [P1]3. We choose this

method because it is to-date one of the most efficient methods

that optimizes the convergence time of homogenous swarm

systems, and because it has roughly the same computational

complexity as our method. The results of this method are

shown in red. We see that the performance does not correlate

with the minspecies cardinality. Since the method does not

optimize the reconfiguration for desired trait distributions, it

is input with a potentially sub-optimal final robot distribution

(which is exacerbated for low minspecies cardinality). Our

method improves upon this state-of-the-art benchmark method

by 25% for DG1 = 5 and by 46% for DG1 = 1. Fig. 7(b)

shows the results for the goal G2. As before, we see that

as the minspecies cardinality of the system increases, the

time to convergence also increases. We verify that DG2 is

a more appropriate measure of diversity than DG1 for goal

G2 by computing the Pearson correlation coefficient. Using

DG1 on this data produces a correlation of 0.23 (with p-value

< 10−4), while DG2 produces a correlation of 0.35 (with

p-value < 10−4), which is a 52% increase over DG1 . This

validates the use of two distinct diversity measures for our

two distinct goals.

E. Decentralized Online Performance Optimization

To conclude our results section, we consider the online

optimization of transition rates within a decentralized con-

troller that uses only local communication to obtain state

information about the robot swarm. We remind the reader

that the robots need knowledge of abstract state information

(i.e., the distribution of the robot swarm among tasks, X(tp)),
at the start of each optimization, see Eq. 27. Hence, if we

intend the robots to obtain this information through local

communication channels only, then we need to understand the

effects that different communication topologies will have on

the performance of the system. Our controller is based on

Eq. 27, which updates transition rates at time intervals δ. To

emulate communication constraints, we consider incremental

coverage: at the most restricted level, we assume that robots

are only able to communicate with other robots collocated at

the same task; this assumption is incrementally relaxed, as we

increase the communication neighborhood to include robots at

adjacent tasks, within a fixed hop-count relative to the present

task. Fig. 8 illustrates this concept for hop-counts of 0, 1,

and 3. For this particular graph, a hop-count of 4 reaches full

coverage (shown in Fig. 8(a)).

3This method implicitly optimizes the convergence time by optimizing
the asymptotic convergence rate (of a system of homogenous robots). We
adapt the method to our problem: we minimize the second eigenvalue λ2 of
a symmetric matrix S(s), such that λ2(S(s)) ≥ Re(λ2(K(s))). Since this
method requires the knowledge of the desired species distribution X⋆ , we
artificially bootstrap the method by computing a random instantiation of X⋆

that satisfies the desired trait distribution defined by Eq. 1. We note that in
practical applications, computing a good instantiation of X⋆ is not trivial.

(a) Full (b) 0-Hops

(c) 1-Hop (d) 3-Hops

Fig. 8. Communication topology, as perceived by robots located at the task
marked in yellow. The robots have knowledge of the trait distribution in their
local neighborhood, which is defined by the hop-count. We show the topology
for 0, 1, and 3-hop neighborhoods, where tasks within the neighborhood are
marked in black. The remaining traits are assumed to be distributed uniformly
among all tasks that are outside of the local neighborhood.
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Fig. 9. (a) Ratio of misplaced traits over time, in log-scale. The results are
averaged over 4 iterations for 8 different for a graphs with M = 8 nodes. The
error bars show the standard deviation. (b) Violin plots with marked median
values for data in the final time-step of plot (a).

Fig. 9(a) shows the ratio of misplaced traits as a function

of time, for five different hop-counts. Fig. 9(b) shows the

distribution of the data points of the final time-step, with

inclusion of all extrema. We observe that, the more we restrict

our communication topology, the higher the error at steady-

state. We note that this performance degradation is graceful

— as we reduce the size of our communication neighborhood

from 4 hops to 0 hops, the final ratio of misplaced traits

increases by 3%, 6%, 11% and 34%, respectively, and still

converges to a modest error of 8% for the most restrictive

communication radius.

VII. CONCLUSION

Overall, this work shows how global design variables (such

as diversity) are incorporated at a high level of abstraction (i.e.,

macroscopic level), to produce optimal controllers that can



also be implemented in decentralized form, and that are able to

take realistic constraints into account (such as limited commu-

nication). By considering the specific problem of distributing

a heterogeneous swarm of robots among a set of tasks with the

goal of satisfying a desired distribution of robot capabilities

among those tasks, we contribute to the understanding of the

effects of diversity in heterogeneous swarms. We propose a

formulation for heterogeneous robot systems through species

and traits, and show how this formulation is used to achieve

an optimal distribution of robots by specifying the desired

final trait distribution. Using this formulation, we propose

a diversity metric based on minspecies that indicates how

performance is affected by diversity. We show that the more

the robot community is diverse, the harder it is to optimize: by

adding redundant (non-complementary) species, we increase

the size of the solution space and facilitate the optimization. In

particular, we show that this conclusion is valid for two differ-

ent goals that require specific implementations of our diversity

metric. The latter implementations are based on specializations

of the minspecies, and are referred to as eigenspecies and

coverspecies.

Our method consists of a constrained optimization problem,

for which we find a computationally efficient solution that is

capable of producing fast convergence times, even for large

numbers of species and traits. Indeed, our computation is

fully scalable with respect to the number of robots, number

of species and number of traits. Building on this result, we

propose a real-time optimization method that enables an online

adaptation of transition rates as a function of the state of the

current robot distribution. We evaluate our methods by means

of microscopic simulations, and show how the performance of

the latter is well predicted by the macroscopic equations.

Future work will consider the development of methods that

automatically generate desired trait distributions as a function

of underlying real-world problems.
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APPENDIX

The optimization in Eq. 14 is reformulated for goal G2 with

E1 =
∥

∥

∥max(Y⋆ −Y, 0)
∥

∥

∥

2

F
(29)

and the derivative (analogous to Eq. 16) is

∂E1

∂eK(s)τ
= −2

[

max(Y⋆ −Y, 0)
]

·
[

x
(s)
0 · q(s)

]⊤

(30)
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